Francis's Octopress Blog

A blogging framework for hackers.

Ruby Performance Tricks --Posted by Sergey Potapov

Ruby Performance Tricks —Posted by Sergey Potapov

http://greyblake.com/blog/2012/09/02/ruby-perfomance-tricks/

I did some benchmarks to find out which alternatives to write code work faster. I wanna share it with you. All benchmarks are made against ruby 1.9.3p194 MRI.

Do not use exceptions for a control flow

The next example is pretty stupid but it shows how exceptions slow against conditional statements.

require 'benchmark'

class Obj
  def with_condition
    respond_to?(:mythical_method) ? self.mythical_method : nil
  end

  def with_rescue
    self.mythical_method
  rescue NoMethodError
    nil
  end
end

obj = Obj.new
N = 10_000_000

puts RUBY_DESCRIPTION

Benchmark.bm(15, "rescue/condition") do |x|
  rescue_report     = x.report("rescue:")    { N.times { obj.with_rescue  } }
  condition_report  = x.report("condition:") { N.times { obj.with_if      } }
  [rescue_report / condition_report]
end

MRI 1.9.3:

ruby 1.9.3p194 (2012-04-20 revision 35410) [x86_64-linux] user system total real rescue: 111.530000 2.650000 114.180000 (115.837103) condition: 2.620000 0.010000 2.630000 ( 2.633154) rescue/condition: 42.568702 265.000000 NaN ( 43.991767)

MRI 1.8.7 (REE has similar result):

ruby 1.8.7 (2011-12-28 patchlevel 357) [x86_64-linux]
                        user     system      total        real
rescue:            80.510000   0.940000  81.450000 ( 81.529022)
if:                 3.320000   0.000000   3.320000 (  3.330166)
rescue/condition:  24.250000        inf       -nan ( 24.481970)

String concatenation

Avoid using += to concatenate strings in favor of << method. The result is absolutely the same: add a string to the end of an existing one. What is the difference then?

See the example:

str1 = "first"
str2 = "second"
str1.object_id       # => 16241320

str1 += str2    # str1 = str1 + str2
str1.object_id  # => 16241240, id is changed

str1 << str2 str1.object_id  # => 16241240, id is the same

When you use += ruby creates a temporal object which is result of str1 + str2. Then it overrides str1 variable with reference to the new built object. On other hand << modifies existing one. As a result of using += you have the next disadvantages:

  • More calculation to join strings.
  • Redundant string object in memory (previous value of str1), which approximates time when GC will trigger.

How += is slow? Basically it depends on length of strings you have operation with.

require 'benchmark'

N = 1000
BASIC_LENGTH = 10

5.times do |factor|
  length = BASIC_LENGTH * (10 ** factor)
  puts "_" * 60 + "\nLENGTH: #{length}"

  Benchmark.bm(10, '+= VS <

Output:

____________________________________________________________
LENGTH: 10
                 user     system      total        real
+=           0.000000   0.000000   0.000000 (  0.004671)
<<           0.000000   0.000000   0.000000 (  0.000176)
+= VS <<          NaN        NaN        NaN ( 26.508796)
____________________________________________________________
LENGTH: 100
                 user     system      total        real
+=           0.020000   0.000000   0.020000 (  0.022995)
<<           0.000000   0.000000   0.000000 (  0.000226)
+= VS <<          Inf        NaN        NaN (101.845829)
____________________________________________________________
LENGTH: 1000
                 user     system      total        real
+=           0.270000   0.120000   0.390000 (  0.390888)
<<           0.000000   0.000000   0.000000 (  0.001730)
+= VS <<          Inf        Inf        NaN (225.920077)
____________________________________________________________
LENGTH: 10000
                 user     system      total        real
+=           3.660000   1.570000   5.230000 (  5.233861)
<<           0.000000   0.010000   0.010000 (  0.015099)
+= VS <<          Inf 157.000000        NaN (346.629692)
____________________________________________________________
LENGTH: 100000
                 user     system      total        real
+=          31.270000  16.990000  48.260000 ( 48.328511)
<<           0.050000   0.050000   0.100000 (  0.105993)
+= VS <<   625.400000 339.800000        NaN (455.961373)

Be careful with calculation within iterators

Assume you need to write a function to convert an array into a hash where keys and values are same as elements of the array:

 

func([1, 2, 3])  # => {1 => 1, 2 => 2, 3 => 3}

The next solution would satisfy the requirements:

def func(array)
  array.inject({}) { |h, e| h.merge(e => e) }
end

And would be extremely slow with big portions of data because it contains nested methods (inject and merge), so it’s O(n2algorithm. But it’s obviously that it must be O(n) . Consider the next:

 

def func(array)
  array.inject({}) { |h, e| h[e] = e; h }
end

In this case we do only one iteration over an array without any hard calculation within the iterator.

See the benchmark:

require 'benchmark'

def n_func(array)
  array.inject({}) { |h, e| h[e] = e; h }
end

def n2_func(array)
  array.inject({}) { |h, e| h.merge(e => e) }
end

BASE_SIZE = 10

4.times do |factor|
  size   = BASE_SIZE * (10 ** factor)
  params = (0..size).to_a
  puts "_" * 60 + "\nSIZE: #{size}"
  Benchmark.bm(10) do |x|
    x.report("O(n)" ) { n_func(params)  }
    x.report("O(n2)") { n2_func(params) }
  end
end

Output:

____________________________________________________________
SIZE: 10
                user     system      total        real
O(n)        0.000000   0.000000   0.000000 (  0.000014)
O(n2)       0.000000   0.000000   0.000000 (  0.000033)
____________________________________________________________
SIZE: 100
                user     system      total        real
O(n)        0.000000   0.000000   0.000000 (  0.000043)
O(n2)       0.000000   0.000000   0.000000 (  0.001070)
____________________________________________________________
SIZE: 1000
                user     system      total        real
O(n)        0.000000   0.000000   0.000000 (  0.000347)
O(n2)       0.130000   0.000000   0.130000 (  0.127638)
____________________________________________________________
SIZE: 10000
                user     system      total        real
O(n)        0.020000   0.000000   0.020000 (  0.019067)
O(n2)      17.850000   0.080000  17.930000 ( 17.983827)



It’s an obvious and trivial example. Just keep in mind to not do hard calculation within iterators if it’s possible.

Use bang! methods

In many cases bang methods do the same as there non-bang analogues but without duplication an object. The previous example with merge! would be much faster:

require 'benchmark'

def merge!(array)
  array.inject({}) { |h, e| h.merge!(e => e) }
end

def merge(array)
  array.inject({}) { |h, e| h.merge(e => e) }
end

N = 10_000
array = (0..N).to_a

Benchmark.bm(10) do |x|
  x.report("merge!") { merge!(array) }
  x.report("merge")  { merge(array)  }
end

Output:

                 user     system      total        real
merge!       0.010000   0.000000   0.010000 (  0.011370)
merge       17.710000   0.000000  17.710000 ( 17.840856)



 

Use instance variables

Accessing instance variable directly is about two times faster than accessing them with accessor methods:

require 'benchmark'

class Metric
  attr_accessor :var

  def initialize(n)
    @n   = n
    @var = 22
  end

  def run
    Benchmark.bm(10) do |x|
      x.report("@var") { @n.times { @var } }
      x.report("var" ) { @n.times { var  } }
      x.report("@var =")     { @n.times {|i| @var = i     } }
      x.report("self.var =") { @n.times {|i| self.var = i } }
    end
  end
end

metric = Metric.new(100_000_000)
metric.run

Output:

                 user     system      total        real
@var         6.980000   0.010000   6.990000 (  7.193725)
var         13.040000   0.000000  13.040000 ( 13.131711)
@var =       7.960000   0.000000   7.960000 (  8.242603)
self.var =  14.910000   0.010000  14.920000 ( 15.960125)

Parallel assignment is slower

require 'benchmark'

N = 10_000_000

Benchmark.bm(15) do |x|
  x.report('parallel') do
    N.times do
      a, b = 10, 20
    end
  end

  x.report('consequentially') do |x|
    N.times do
      a = 10
      b = 20
    end
  end
end

Output:

                      user     system      total        real
parallel          1.900000   0.000000   1.900000 (  1.928063)
consequentially   0.880000   0.000000   0.880000 (  0.879675)



 

Dynamic method defention

What is the faster way to define method dynamically: class_eval with a code string or using define_method? Which way generated methods work faster?

require 'benchmark'

class Metric
  N = 1_000_000

  def self.class_eval_with_string
    N.times do |i|
      class_eval(<

Output:

                             user     system      total        real
class_eval with string 219.840000   0.720000 220.560000 (221.933074)
define_method           61.280000   0.240000  61.520000 ( 62.070911)
string method            0.110000   0.000000   0.110000 (  0.111433)
dynamic method           0.150000   0.000000   0.150000 (  0.156537)

So class_eval works slower but it’s preferred since methods generated with class_evaland a string of code work faster.

Links

Danke.